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Abstract

This paper examines the role of continuity of the basis indbwputation of turbulent
flows. We compare standard finite elements and NURBS (ndisumirational B-splines)
discretizations that are employed in Isogeometric Analj3B]. We make use of quadratic
discretizations that ar€°-continuous across element boundaries in standard firéte el
ments, and’''-continuous in the case of NURBS. The variational multiseakidual-based
method [2, 4, 12, 22, 38] is employed as a turbulence modédicignique. We find thad'!-
continuous discretizations outperform théif-continuous counterparts on a per-degree-
of-freedom basis. We also find that the effect of continustglieater for higher Reynolds
number flows.
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1 Introduction

Due to the complicated multiscale nature of turbulence, enizal simulation of
turbulent flows remains a significant computational chagéeto this day. A com-
munity of researchers focused on understanding fundamgmyaicalbehavior of
turbulence through numerical simulation typically makeg of very simple ge-
ometries and high-order spectral or compact finite diffeeemethods (see, e.g.,
[32, 34]). The underlying function spaces utilized in sp&lcinethods are of high
continuity (C* in the cases of Fourier series and global polynomials). @mwther
hand, turbulent flows are also of great interest in generahggry industrial ap-
plications. These are typically computed using finite voduamd finite element
methods, which employ low-order approximation functiohattare at most°-
continuous.

Recently, Hughest al.[23] introduced a new computational technique termed Iso-
geometric Analysis in an attempt to generalize and improvéhe finite element
method in the areas of geometry and solution representawell as mesh re-
finement. Isogeometric analysis is based on the geometnitwes of computer
graphics and computer-aided design systems. The firsnhitestian of isogeomet-
ric analysis made use of NURBS (non-uniform rational B+sgdi, see [16, 36, 37]).
NURBS-based isogeometric analysis was successfully egppdi solve problems
of vascular fluid-structure interaction in [5]. Accuracytbé new methodology for
structural vibrations was shown to be superior to that ofddiad finite elements in
[17]. A mathematical theory of NURBS-based isogeometradysis was put forth

in [3]. A distinguishing feature of isogeometric analyssp-called:-refinement,

in which the order of the functions is increased togethehwheir continuity. As

a result, isogeometric analysis allows for higher-orded higher-continuity dis-
cretizations on complex geometriesand may be thought of as bridging the gap
existing between the procedures employed in the flow-pByancl industrial-flow
communities.

A variational multiscale, residual-based turbulence niadeframework has re-
cently emerged as a new concept in large-eddy simulatioS)loEturbulent flows

(see [2, 4, 12, 22, 38]). In this methodology one obtainseract equation for

the coarse, or resolved, scales and their explicit depeeden the fine, or unre-
solved, scales, and the modeling task amounts to accuraetgsenting the fine
scales in the coarse-scale equations. In this paper, @tsply the theory of sta-
bilized methods, we employ simple algebraic models for the 8cales, which
involve appropriately-scaled residuals of the underlymagtial differential equa-

° Itis important to note that the highest possible order oftioniity of the solution space
in a NURBS-based isogeometric analysis is limited to thetinaity of the basis used
in the definition of the geometrical domain of interest. Pkneefinement with maximal
smoothness is only attainable in simple geometries



tions. For a summary of the early literature on stabilizedhoés see Brooks and
Hughes [10]. Recent work on stabilized methods is presentfdd 8, 9, 11, 15, 18—
21, 28, 33, 41].

Spectral studies of simple advective and diffusive modebj@ms in [4] indicated
better accuracy for th€*-continuous case, especially in the upper part of the spec-
trum. NURBS-based isogeometric analysis, in conjunctigh the multiscale ap-
proach, was applied to turbulent flow computations in [2gliRtinary results in-
dicated better accuracy for higher-order and higher-coity discretizations. It
was noted in [2] that when going from(@’-continuous linear to &*-continuous
guadratic B-spline basis an increase in solution accurasy obtained. The ques-
tion this raises is whether it was the oraercontinuity of the basis functions that
led to superior accuracy. It is the primary goal of this papemnswer this question.
It should be noted that good accuracy of B-spline discrétina for wall-bounded
turbulent flows was also noted in [29-31, 40].

The variational multiscale formulation employed in thigdst utilized the “advec-
tive form” of the convection term rather than the integrabgdarts “conservative
form”. The advective form is often employed in finite elem#éotv codes, perhaps
more so than the conservative form. In earlier works on tedidased approaches
[2, 4,12, 22], the conservative form was employed.

The paper is organized as follows. In Section 2, we state #akviormulation of

the incompressible Navier-Stokes (INS) equations at timéimoous level. In Sec-

tion 3, we give the semi-discrete, residual-based vanatimultiscale formulation

of INS in advective form. In Section 4, we present numerieslits for equilib-

rium turbulent channel flows at friction-velocity Reynoldsmbers180 and590.

We compare&’’- andC'*-continuous quadratic elements and assess accuracy on the
basis of the number of degrees-of-freedom. High-fidelitgat numerical simula-

tion (DNS) results of [35] are used as reference solutiom&dction 5, we draw
conclusions.

2 Incompressible Navier-Stokes Equations

We begin by considering a weak formulation of the incompldsdNavier-Stokes
equations. LeV denote the trial solution and weighting function spacescivare
assumed to be the same. We also assume 0 onI" and [, p(t) d2 = 0 for all
t € ]0,T[. The variational formulation is stated as follows: Fbd= {u,p} € V
such thattW = {w, ¢} € V,

B(W.,U) = (W, F) (1)



where

B(W.,U) = <'w, %—?) — (Vw,u®@u),+ (¢, V- u),
Q
- (v ' va)Q + (vsw’ 2VVSU)Q ) (2)
(W, F) = (w, f)a, 3)
and
Viu = %(Vu + vaul). 4)

f is the body force (per unit volume) ands the kinematic viscosity.

Variational equations (1)-(3) imply weak satisfactiontod tinear momentum equa-
tions and incompressibility constraint, namely

8—U+V~(u®u)+Vp—V~(2uVsu)—f:0 in Q, (5)

ot
V.ou=0  inQ (6)

Note that one may use the incompressibility constraintrgpéify the momentum
equation as

%-}-u-V’u,—}—Vp—I/Au—f:O in Q. (7)

3 Multiscale Residual-based Formulation of INS Employing he Advective
Form

We consider a direct-sum decompositionbinto “coarse-scale” and “fine-scale”
subspaces/” andV’, respectively,

yv=V'ae) (8)

V" is assumed to be a finite-dimensional space, which will betitied later with
the space of functions with which we actually compute. On&iok a unique
decomposition in (8) with the aid of a linear projection ager P, that gives
U" = PU € V" andU’ = (T — P)U € V' from a givenU < V (see [25]
for details).

By restricting the weighting space ¥ in (1) and employing the direct-sum de-
composition (8) for the solution space, we obtain the equatystem for the large



scales, namely: Fint" = {u”, p"} € V" such thavW" = {w", ¢"} € V",
BW" U"+U") = (W" F). (9)

(9) indicates precisely the manner in which the large scdiggend onU’ =
{u,p'}.

Combining (2) and (9), we obtain: Fild" € V", such thayW" e V",

V- ’wh,ph)Q + (szh, 2VVsuh)Q — ('wh, f)Q

(
(
p Ou' ook / B h
+<w —) —(Vw,u ®u)Q—(V'w,u ®u)Q
Q
(

— (V : wh,p')Q + (szh, 21/V‘9u’)Q =0 (10)

For purposes of modeling the fine scales we make the simpijfgissumption

(wh, 6;:")9 = 0. We note, however, that it has been shown in [14] that it isshen

cial to incorporate this effect in modeling the fine scaldse ﬂérm(vswh, 2Veu/ o
may be omitted by selecting a projector that enforces thegudnality of the coarse
and fine scales in the semi-norm induced by this term (seg[2]g

We turn our attention to the convective terms in (10). Assignncompressibility
of the velocity field, namelyy - (u” + u’) = 0, we compute:

—(V'wh,uh®uh)Q (Vw u ®u)

—(Vw u®u)Q (V'w u®u)Q
(V'w u" @ (u + ))
Vuw', u ®uh)Q (V'w u ®u)Q

~
( ' uh)ﬂ
~

Vw" v ®u ) — (V'wh,u’®u’)Q (11)

At this point we assume th&ktis partitioned into a set of subdomains, such as finite
elements or NURBS elements, and on this partition we haveta fimensional
space of functions with local support that forms our appr@tion space fot/"
andW". Letx = {z;}%_,, denote the coordinates of eleméntin physical space,
and let¢ = {5, ¢ _,, denote the coordinates of elemétitin parametric space. Let
x =z : K — K be a continuously differentiable map with a continuously
differentiable inverse.



We model the fine scales as in [4]:
U ~-TtR(U"), (12)

wherer is a4 x 4 matrix (in three spatial dimensions) aRi{U") is a4 x 1 vector
that collects momentum and continuity residuals of the Blagitokes equations,

R(U") = {r},(u",p"),rc(u")}", (13)
in which
h o h ou” h h h h
ry(u ,p)zﬁjtu -Vu" + Vp" —vAu" — f, (24)
ro(u") =V - u" (15)

We definer as follows:

T = diag(TM,TM,TJ\/bTC)a (16)
where
4
T = (ﬁ +u" - Gu' + CpPG G2, (17)
e =1(9 -Tug)"", (18)

with G a second rank metric tensor

G- Kk (19)
andg a vector obtained from the column sumsgéf,

g9 ={9:}

9i = i(?—im (20)

Jj=1

The definition ofr,, in (17) is inspired by the theory of stabilized methods for
advection-diffusion-reaction systems (see, e.g., Shatighes and Johan [39],
Hughes and Mallet [24]). The definition af, comes from the small-scale Shur
complement operator for the pressure (see [2] for a details)

Combining equations (10)-(12), we obtain our discrete fdation: FindU" ¢ V",



such thavyw" e y»,

(%),

'wh, u — TMT M) - Vuh)ﬂ+(qh,V~uh)Q

(
(V) (T ) - (),

(uh Vw" 4+ V¢, TM’I"M) + (V ~w", 7oV - uh)Q
(V'w TMT M & TM’I"M) =0. (21)

+

4 Numerical experiments for turbulent channel flow

4.1 Problem setup

To examine the effects of continuity, we compute turbuléairmel flows at Reynolds
numberske, = 180 andRe, = 590, based on the friction velocity and the channel
half width. To assess the accuracy of the calculations, wepeoe with the DNS
of [35].

The problem setup is as follows. The computational domaarisctangular box,

and the flow is driven by a constant pressure gradient in tearsi-wise direction.

Periodic boundary conditions are imposed in the streane-amsl span-wise direc-
tions, commonly referred to as homogeneous directions.-Alipdoundary con-

dition is applied at the walls. The no-slip boundary cormuhitis enforced strongly,

that is, the discrete velocity is set to zero at the walls. Beraative approach is to
enforce Dirichlet boundary conditions weakly. This is aogdished by appropri-

ately augmenting the semi-discrete equations (21) by témaienforce the no-slip
condition weakly (see [6, 7] for details). Although the ¢athpproach was shown
to be superior to the former, we did not employ it in the comaiohs presented
herein.

We employ quadratic finite elements that afecontinuous, and quadratic NURBS
elements that ar€'-continuous across element interfaces. The basis fursctitin
lized in our computations are shown in Figure 1.

The semi-discrete equations (21) are advanced in time ubmgeneralized:
method [13, 26]. We use meshes that are stretched in theneattal direction
according to a hyperbolic function to cluster points neanilall. Moreover, in the
definition of 1, (17) we setC, a positive constant that derives from an element-
wise inverse estimate (see, e.g., [27]), to 36.

Numerical results for all cases are reported in the form afistics of the mean
velocity and root-mean-square velocity fluctuations. Tia¢igtics were computed



0 1 2 3 4 5 6

(a) C°-continuous quadratic elements

(b) C*-continuous quadratic NURBS

Fig. 1. Basis functions employed in homogeneous directiBasis functions are shown
in a univariate setting. Three-dimensional basis funetiare obtained by taking tensor
products of one-dimensional basis functions. The mesteestegtched in the wall-normal
direction.

by sampling the velocity field at the mesh knots and averatiagolution in time
as well as in the homogeneous directions. The meshes wesercisoch that the
number of degrees of freedom for both quadratic discretimatare approximately
the same. All computational results are presented in noredsional wall units.

4.2 Turbulent channel flow dte, = 180

The domain size i8r, 2, and4 /37 in the stream-wise, wall-normal, and span-wise
directions, respectively. The corresponding DNS computatias carried out on a
domain of the same size wiil28 x 129 x 128 spectral functions in the stream-wise,
wall-normal and span-wise direction, respectively.



Cé Pg 32x34x32 ——
c® p? 32x33x32 ——

+
D
(a) Mean stream-wise velocity
Cg P 32x34x32 ——
C” P” 32x33x32 —
DNS ——
+
>

0O 20 40 60 80 100 120 140 160 180
y+
(b) Stream-wise velocity fluctuations

Fig. 2. Turbulent channel flow d&e, = 180 computed on 823 element mesh. Comparison
of C- versusC'-continuous discretizations.

We carried out computations employirigf- and C''-continuous quadratic dis-
cretizations keeping the number of degrees of freedom ynélael same in both
cases. For the"® case we used a mesh tf® elements, which gavé2 x 33 x 32
basis functions in our discrete space, whereas fo€thease we employed a mesh



cé P? 32x34x32 ——
c? p? 32x33x32 ——
DNS ——

+
>
0O 20 40 60 80 100 120 140 160 180
y+
(a) Wall-normal velocity fluctuations
Cg P 32x34x32 ——
C” P” 32x33x32 —
DNS ——
+
=

0O 20 40 60 80 100 120 140 160 180
y+
(b) Span-wise velocity fluctuations

Fig. 3. Turbulent channel flow e, = 180 computed on 823 element mesh. Comparison
of C- versusC'-continuous discretizations.

of 322 elements, which led to a discrete space compriséd af34 x 32 basis func-
tions. (The open knot vector construction is responsibiéfe extra basis function
in the wall-normal direction; see Hughes, Cottrell and Baa [23].)
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Figure 2 illustrates that the mean flow obtained with ¢tecontinuous discretiza-
tion is slightly more accurate. However, both discretimasi show good agreement
with the DNS result. On the other hand, the fluctuations ageiitantly better in
the case of’'! quadratics (see Figures 2-3).

4.3 Turbulent channel flow dte, = 590

We also performed turbulent channel flow computationgfer = 590 to examine
the effects of the continuity as the Reynolds number of th& ffoincreased. For
this simulation the domain size 25, 2, andr in the stream-wise, wall-normal and
span-wise directions, respectively. The correspondingDised the same domain
size with a resolution 0884 x 257 x 384 spectral functions in the stream-wise,
wall-normal and span-wise directions.

As in the Re, = 180 case, we present results comparing quadratic discretizati
that areC°- and C''-continuous while keeping the number of degrees of freedom
nearly the same. Figures 4-5 show the results obtained asifignesh of32 x 33 x

32 basis functions and @' mesh of32 x 34 x 32 basis functions. The difference
in the number of degrees of freedom is, as mentioned prdyiaiibutable to the
open knot vector construction for the NURBS basis. Theséngseare considered
coarse for this simulation, which is manifested by the faet the mean stream-
wise velocity is over-predicted by both discretizatioms €' discretization being
more accurate (see Figure 4). As in tRe, = 180 case, the velocity fluctuations
are significantly more accurate f6f' quadratic NURBS, as shown in Figures 4-5.

We performed the same comparison studyhemrefined meshes, resulting i x

65 x 64 functions for theC? basis andi4 x 66 x 64 functions for theC* basis.
Results are presented in Figures 6-7. Both the mean flow actdditions are more
accurate in the case 6f' NURBS, for which the mean steam-wise velocity is very
close to the DNS result. From the above results one may inésblution accuracy
depends more critically on the continuity of the discretaa for flows at higher
Reynolds number.

5 Conclusions

In this work, we presented a residual-based, variationdtiseale model of turbu-
lence that is based on the advective form of the convection, te popular choice
in finite element flow codes. We compared turbulent channel fésults using’°-
andC'-continuous quadratic discretizations. Using acontinuous quadratic ba-
sis yields more accurate mean flow and fluctuating quantitiass C°-continuous
guadratic basis functions. We conclude that smooth NURBSsanctions have

11



Cé Pg 32x34x32 ——
c® p? 32x33x32 ——

+
D
(a) Mean stream-wise velocity
C, P2 32x34x32 ——
C” P” 32x33x32 —
DNS ——
+
>

0 100 200 300 400 500
y+
(b) Stream-wise velocity fluctuations

Fig. 4. Turbulent channel flow &e, = 590 computed on 823 element mesh. Comparison
of C- versusC'-continuous discretizations.

advantages over’-continuous finite elements in turbulent flow calculatioasa-
ticipated in [4].

12



cé Pg 32x34x32 ——
c? p? 32x33x32 ——

DNS ——

+
>
0 100 200 300 400 500
y+
(a) Wall-normal velocity fluctuations
C, P2 32x34x32 ——
C” P” 32x33x32 —
DNS ——
+
=

0 100 200 300 400 500
y+
(b) Span-wise velocity fluctuations

Fig. 5. Turbulent channel flow &e, = 590 computed on 823 element mesh. Comparison
of C- versusC'-continuous discretizations.
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DNS ——

+
D
1 10 100
y+
(a) Mean stream-wise velocity
C, P2 64x66x64
C” P~ 64x65x64
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+
>
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(b) Stream-wise velocity fluctuations

Fig. 6. Turbulent channel flow d&e, = 590 computed on &43 element mesh. Comparison
of C- versusC'-continuous discretizations.
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Fig. 7. Turbulent channel flow d&e, = 590 computed on &43 element mesh. Comparison
of C- versusC'-continuous discretizations.
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